Universität UNE EBERHARD KARLS

际

Research Goal and Hypotheses
We investigate how finger gnosia, fine motor skills (finger agility and object manipulation), and spatial working memory capacity (WM) are associated with preschool children's finger counting and finger montring skills.

Hypothesis 1: Finger gnosia, fine motor skills, and spatia WM are associated with finger counting/montring skills
Hypothesis 2: Fine motor skills are more strongly associated with finger counting / montring skills than finger gnosia
Hypothesis 3: Spatial WM moderates these associations which should be stronger for children with low WM capacity

Participants

$n=271$ children (127 girls)
Age: $M=5.0$ years, $S D=9.78$,
range: 40-81 months
Handedness: 246 right, 17 left,
1 alternating
Tasks
Finger gnosia
Non-motoric task: Is the same finger touched on the child's hand and the drawing?
7 items, 0-7 points
Datasets from two studies ($n=141$ and $n=155$)
Mostly identical tasks
25 participants excluded due to missing data
Data collection 2018-2020 in Southern Germany

Fine motor skill: Finger agility
Lift the same finger as the experimenter and tap it on the table while not moving other fingers 16 items, 0-16 points

Fine motor skill: Object manipulation
Thread 6-12 beads as fast as possible (MABC-2 ${ }^{6}$)
2 trials, faster one is scored in sec.

Spatial working memory
Corsi Block Tapping Task, Backward: Copying a sequence of tapped blocks in reverse order Two trials per span
Longest correctly replicated span \rightarrow WM span

Finger counting

Count to X on your fingers (e.g., «three»)
6 items (numbers 2-7), 0-6 points \square „one" „two" three

Finger montring

- Show me X fingers (e.g., «three»)

6 items (numbers 2-7), 0-6 points

Descriptive Statistics
Table 1. Descriptive Statistics

	N	\min	\max	M	SD	Skew	Kurtosis
Age in months	271	40	81	59.53	9.78	.404	-.861
Finger gnosia (sum of solved items)	271	0	7	4.74	1.31	-.252	.063
Finger agility (sum of solved items)	270	0	16	10.46	3.85	-.561	-.152
Object manipulation (time in seconds)	271	19	205	47.22	21.51	2.78	13.49
Spatial WM (backward span)	247	0	6	2.63	1.57	.161	-.235
Finger counting (sum of solved items)	269	0	6	5.19	1.51	-2.04	3.26
Finger montring (sum of solved items)	267	0	6	4.97	1.51	-1.509	1.491

Analytical Approach

Spatial working memory capacity moderates the association between fine motor skills and finger counting / finger montring in preschoolers

Ursula Fischer ${ }^{1,2}$, Stephanie Roesch ${ }^{3}$, Julia Bahnmueller ${ }^{4}$, Roberta Barrocas ${ }^{5}$, Nadine Bollmann ${ }^{2}$, Korbinian Moeller ${ }^{4}$

${ }^{1}$ University of Teacher Education in Special Needs, Zurich, Switzerland, ${ }^{2}$ University of Konstanz, Germany, ${ }^{3}$ University of Tuebingen, Germany, ${ }^{4}$ Loughborough University, ${ }^{5}$ Leibniz-Institut fuer Wissensmedien, Tuebingen, Germany

Theoretical Background

Finger gnosia, fine motor skills, and spatial working memory (WM) have been identified as domain-genera precursor skills to children's early numerical and mathematical competencies ${ }^{1,2,3}$
WM in particular has been consistently associated with mathematical skills, specifically so in children with mathematical difficulties ${ }^{4}$
Finger gnosia and fine motor skills, in turn, are reportedly more strongly related to basic numerical skills and have been argued to impact early finger counting (counting on one's fingers) and finger montring skills (displaying numerical magnitudes with one's hands) ${ }^{5}$
However, it is unclear how children's spatial WM capacity impacts the effect that finger gnosia and fine motor skills might have on their ability to count or represent magnitudes with their fingers

Results Hypotheses 1+2: Associations
Table 2. Partial Spearman correlation coefficients controlling for age.

1	Finger counting	--				
2	Finger montring	.569**	--			
3	Finger gnosia	. 101	. 116	--		
4	Finger agility	.222**	. $148{ }^{*}$. 069	--	
5	Object manipulation	.142*	.165**	. 030	.174*******)	--
6	Spatial WM	.207*	.175**	.166**	. 085	.187**

Tabe 3. Multiple linear regression models predicting finger counting and finger montring.

	Finger counting			Finger montring		
	B	SE B	β	B	SE B	β
Intercept	. 044	. 053		. 046	. 054	
Finger gnosia	. 067	. 056	. 072	. 082	. 057	. 086
Finger agility	. 203	. 058	. $214{ }^{* *}$. 136	. 059	.138*
Object manipulation	. 121	. 061	.121*	. 166	. 063	.158**
Spatial WM	. 176	. 066	.191**	. 194	. 067	.206**
Age	. 123	. 066	. 132	. 160	. 067	.168*
R^{2}	.226**			.239**		

Results Hypothesis 3: Moderating Effects of Spatial Working Memory

Spatial WM moderating the association between finger agility and finger counting

Effects on finger counting	$\boldsymbol{\beta}$	SE β	
Finger agility	. $\mathbf{2 0 7}$.056	
Spable 4. Results of			
Spatial WM	. $\mathbf{2 1 6 ^ { * * }}$.063	moderation analysis
Finger agility x Spatial WM	$\mathbf{- 1 7 7 ^ { * * }}$.059	
Age	$\mathbf{. 1 5 6}$.065	

Fig. 2. Simple Fig. 2. Simple
slopes of the slopes of the
interaction between finger agility and spatia agility
WM

Spatial WM moderating the association between object manipulation and finger counting

Spatial WM moderating the association between finger agility and finger montring

Effects on finger montring	B	SE β	Table 5. Results of moderation analysis
Finger agility	.149*	. 058	
Spatial WM	.249**	. 065	
Finger agility x Spatial WM	-.153*	. 060	
Age	.187**	. 067	

Spatial WM moderating the association between object manipulation and finger montring

Effects on finger montring	$\boldsymbol{\beta}$	$\mathbf{S E \boldsymbol { \beta }}$
Object manipulation	.105	.069
Spable 7. Results of		
Spaial WM	$.257^{* *}$.068
Object manipulation x Spatial WM	$-.185^{* *}$.063
Age	$.230^{* *}$.066

Summary and Discussion
Children's fine motor skills and spatial WM capacity, but not finger gnosia, were significantly associated with their finger counting/montring skills
Spatial WM capacity moderates the association between fine motor skills and finger counting / montring skills, which is strongest for children with low WM capacity and not significant for children with high WM capacity
Children with low spatial WM capacity might rely more on their fine motor skills to count / display magnitudes with their fingers compared to children with high working memory capacity, who might not need to
Future research and intervention on finger counting skills should consider both spatial WM and fine motor skills

Literature

Contact: ursula.fischer@hfh.ch
University of Teacher Education in Special Needs, Zurich (HfH), www.hfh.ch

